代数结构
在泛代数中代数结构是在一种或多种运算下封闭的一个或多个集合[1]。
例如,群、环、域、和格的代数结构。更复杂的结构可以被定义为通过引入多个操作,不同的基础集,或通过改变限定公理。更复杂的代数结构的实例包括向量空间,模和代數 (環論)。关于代数结构的的详细情况,参见各个链接。
一个代数结构包含集合及符合某些公理的运算或关系。
集U上定义二元运算形成的系统称为代数系统,如果对于任意a,b∈U,恒有(a·b)∈U。二元运算可推广至多元运算F,则相应的封闭性要求则改为:对于任意a,b,c,d,……∈U,恒有F(a,b,c,d,……)∈U。有的书上对封闭性未作要求,并称之为广群。运算f是一个从A×B→C的映射,若A=B=C,则称运算f是封闭的。
参阅
- 数学结构
- 结构 (数理逻辑)
- 自由對象
参考文献
^ P.M. Cohn. (1981) Universal Algebra, Springer, p. 41.
外部链接
(英文)Jipsen's algebra structures. Includes many structures not mentioned here.
(英文)Mathworld的抽象代数页面。
(英文)Stanford Encyclopedia of Philosophy: Algebra by Vaughan Pratt.
这是一篇关于数学的小作品。你可以通过编辑或修订扩充其内容。 |
|