共形場論


共形場論保角場論 (conformal field theory, CFT) 是量子場論一支,研究共形對稱之量子場組成之結構 (數學上或相通於處臨界點之統計力學模型) 。一此結構亦俗稱「一共形場論」。此論中最為人知者是二維共形場論,因其有一巨大、對應於各全純函數之無限維局部共形變換羣。


共形場論有用於弦論、統計力學、凝態物理。




目录





  • 1 標度不變與共形不變


  • 2 二維共形場論


  • 3 參閱


  • 4


  • 5 参考资料


  • 6 延伸閱讀


  • 7 外部链接




標度不變與共形不變


標度變換 是共形變換之子集。
標度變換下不變、但共形變換下變之量子場論例子罕見。
而且在某些條件下,標度不變涵蘊共形不變。
故量子場論研究員常混用標度不變共形不變二詞。



二維共形場論


二維共形場論有一無限維之局部共形變換羣。例如,考慮黎曼球面上的共形場論:雖其變換羣由各莫比乌斯变换組成、同構於PSL(2,C),但其無窮小共形變換則構成無限維之Witt代數。注意:大多共形場論量子化後會出現共形反常(又稱Weyl反常)。此現象引進一非零之中心荷,因而Witt代數須擴展成Virasoro代數。


此對稱結構讓我們更細緻分類二維的共形場論。尤其我們可聯繋一共形場論之原初算子英语primary operator與其中心荷 c。各物理態英语physical state組成之希爾伯特空間是Virasoro代數以c為定值之一么正模英语unitary module({{link-en|么正表示|unitary representation)。若要使整個系統穏定,則其哈密顿量能譜英语energy spectrum應限於零上。最廣為人用者是Virasoro代數之最高权重表示英语highest weight representation


一手徵場是一全純場W(z),其在維拉宿代數作用下之變換為



LnW(z)=−zn+1∂∂zW(z)−ΔznW(z)displaystyle L_nW(z)=-z^n+1frac partial partial zW(z)-Delta z^nW(z)L_nW(z)=-z^n+1frac partial partial zW(z)-Delta z^nW(z),


L¯nW(z)=0.displaystyle bar L_nW(z)=0.,bar L_nW(z)=0.,.

反手徵場之定義亦類同。我们稱 Δ 為手徵場W之「共形权重英语conformal weight」。


亚历山大·泽莫罗德奇科夫英语Alexander Zamolodchikov曾證明存在一函數 C,在重整羣英语renormalization group流(renormalization group flow)作用下單調下降,且等於一个2維共形場論之中心荷。此定理称为「泽莫罗德奇科夫C-定理」。



參閱


  • AdS/CFT对偶

  • 算子積展開

  • 頂點代數

  • WZW模型

  • 臨界點

  • 共形反常







参考资料


.mw-parser-output .refbeginfont-size:90%;margin-bottom:0.5em.mw-parser-output .refbegin-hanging-indents>ullist-style-type:none;margin-left:0.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>ddmargin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none.mw-parser-output .refbegin-100font-size:100%


  • Paul Ginsparg. Applied Conformal Field Theory [应用共形场论]. 1988. arXiv:hep-th/9108028 (英语). .


  • P. Di Francesco; P. Mathieu; D. Sénéchal. Conformal Field Theory [共形场论]. 紐約: Springer-Verlag. 1997. ISBN 0-387-94785-X (英语). .


  • A. B Zamolodchikov. Infinite Conformal Symmetry In Two-Dimensional Quantum Field Theory [2维量子场论的无穷共形对称性]. Nucl. Phys. 1984: 333–380 (英语). .


  • A. B Zamolodchikov. Irreversibility Of The Flux Of The Renormalization Group In A 2-D Field Theory [2维场论重正化群的通量不可逆性]. JETP Lett. 1986: 730–732 (俄语). 


延伸閱讀



  • Martin Schottenloher. A Mathematical Introduction to Conformal Field Theory [共形场论的数学导引] 2. Berlin; Heidelberg: Springer-Verlag. 2008 [1997]. ISBN 978-3-540-68625-5 (英语). .


  • Paul Ginsparg. Applied Conformal Field Theory [应用共形场论]. arXiv:hep-th/9108028 (英语). .


  • P. Di Francesco; P. Mathieu; D. Sénéchal. Conformal Field Theory [共形场论]. New York: Springer-Verlag. 1997. ISBN 0-387-94785-X (英语). .


外部链接


  • 弦论通俗演义(十九)


  • Conformal Field Theory page in String Theory Wiki lists books and reviews

Popular posts from this blog

【情報】本週珍珠商品重點:煉金時裝 + 艾港勞工宿舍!!

京昆高速公路

【攻略】陳戈-謝勒汗智慧的古書 (完成)