表面增强拉曼光谱





Sers.jpg


表面增强拉曼光谱英语:Surface-enhanced Raman spectroscopy)或表面增强拉曼散射英语:surface-enhanced Raman scattering (SERS)),是一种通过吸附在粗糙金属表面上的分子或等离子体磁性二氧化硅纳米管等纳米结构增强拉曼散射的表面敏感技术[1],其增强因子可高达1010−1011displaystyle 10^10-10^11displaystyle 10^10-10^11[2][3],这意味着该技术可以检测单个分子[4][5]




目录





  • 1 历史


  • 2 机理

    • 2.1 電磁理論


    • 2.2 化學理論



  • 3 应用


  • 4 参考文献




历史


1973年,英国南安普敦大学化学系的马丁·弗莱舍曼,帕特里克·J·亨德拉和A.詹姆斯·麦奎伦发现了吸附在电化学粗糙银上的吡啶的表面增强拉曼光谱[6]。这篇论文被引用超过4000次。1977年,两个团队分别注意到散射物质的浓度无法解释增强信号,并且每个团队分别提出了一种增强信号的产生机理,这两种机理现在仍被接受。让马尔和凡·瓦拉赫提出是电磁效应[7],而阿尔布雷希和克赖顿提出是电荷转移效应[8]。橡树岭国家实验室健康科学研究室的鲁弗斯·里奇,预测了表面等离子体的存在[9]



机理


表面增强拉曼光谱的确切机理仍然在争论中。有两种机理基本不同的理论,实验中仍无法准确地区分它们。电磁理论提出机理是局部表面等离子体的激发,而化学理论提出是电荷转移配合物的形成。化学理论仅适用于表面已形成化学键的物质,所以不能解释所有观察到的增强信号,而电磁理论可以应用于试样只是物理吸附在表面的情况下。最近的研究表明,当激发分子远离承载金属纳米颗粒的表面,导致表面等离子体现象时,表面增强拉曼现象也可以发生[10]。这一观察有力支撑了表面增强拉曼光谱的电磁理论。2015年对表面增强拉曼光谱更强大的扩展技术——多相和多成分超灵敏表面增强拉曼散射(英语:Slippery Liquid-Infused Porous SERS (SLIPSERS)[11]的研究进一步支持了电磁理论[12]



電磁理論


當特定表面的電場加強時,物質吸附在該平面上的拉曼光譜的強度會增加。當一束光打至金屬表面,被擊中的金屬表面將會激發出電漿子。另外,只有當電漿子的震動方向與金屬表面垂直時才會發生拉曼散射;反之,拉曼散射不會發生。因此,表面增強拉曼光譜(SERS)實驗需要使用粗糙的金屬表面或者使用經過排列的奈米微粒(nano-particle)才能有效地加強拉曼光譜。



化學理論



应用


银纳米棒制备的表面增强拉曼光谱的底物被用于检测低丰度的生物分子的存在,因此可以检测体液中的蛋白质[13][14][15][16]。该技术已用于检测尿素和游离在人血清中的血浆标签,并且可以成为癌症检测和筛选下一代技术[15][16]。表面增强拉曼光谱具有的分析纳米尺度混合物的组成的能力,使其应用于环境分析、药学、材料科学、艺术和考古研究、法医学、药物和爆炸物检测、食品质量分析[17]和单藻类细胞的检测[18][19][20]。表面增强拉曼光谱与等离子体传感结合,可用于生物分子相互作用的高灵敏度的定量检测[21]



参考文献




  1. ^ Xu, X., Li, H., Hasan, D., Ruoff, R. S., Wang, A. X. and Fan, D. L. (2013), Near-Field Enhanced Plasmonic-Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis. Adv. Funct. Mater.. doi:10.1002/adfm.201203822


  2. ^ Blackie, Evan J.; Le Ru, Eric C.; Etchegoin, Pablo G. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. J. Am. Chem. Soc. 2009, 131 (40): 14466–14472. PMID 19807188. doi:10.1021/ja905319w. 


  3. ^ Blackie, Evan J.; Le Ru, Eric C.; Meyer, Matthias; Etchegoin, Pablo G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C. 2007, 111 (37): 13794–13803. doi:10.1021/jp0687908. 


  4. ^ Nie, S; Emory, SR. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997, 275 (5303): 1102–6. PMID 9027306. doi:10.1126/science.275.5303.1102. 


  5. ^ Le Ru, Eric C.; Meyer, Matthias; Etchegoin, Pablo G. Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. J. Phys. Chem. B. 2006, 110 (4): 1944–1948. PMID 16471765. doi:10.1021/jp054732v. 


  6. ^ Fleischmann, M.; PJ Hendra & AJ McQuillan. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters. 15 May 1974, 26 (2): 163–166. Bibcode:1974CPL....26..163F. doi:10.1016/0009-2614(74)85388-1. 


  7. ^ Jeanmaire, David L.; Richard P. van Duyne. Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. Journal of Electroanalytical Chemistry. 1977, 84: 1–20. doi:10.1016/S0022-0728(77)80224-6. 


  8. ^ Albrecht, M. Grant; J. Alan Creighton. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. Journal of the American Chemical Society. 1977, 99 (15): 5215–5217. doi:10.1021/ja00457a071. 


  9. ^ Technical Highlights. New Probe Detects Trace Pollutants in Groundwater. Oak Ridge National Laboratory Review. (原始内容存档于2010年1月15日). 


  10. ^ Kukushkin, V. I.; Van’kov, A. B.; Kukushkin, I. V. Long-range manifestation of surface-enhanced Raman scattering. JETP Letters. 2013, 98 (2): 64–69. ISSN 0021-3640. doi:10.1134/S0021364013150113. 


  11. ^ Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proceedings of the National Academy of Sciences. 2016-01-12, 113 (2): 268–273. ISSN 0027-8424. PMC 4720322. PMID 26719413. doi:10.1073/pnas.1518980113 (英语). 


  12. ^ http://helldesign.net. Single-molecule detection of contaminants, explosives or diseases now possible KurzweilAI. www.kurzweilai.net. [2017-05-02] (美国英语). 


  13. ^ Rapid Identification by Surface-Enhanced Raman Spectroscopy of Cancer Cells at Low Concentrations Flowing in a Microfluidic Channel
    Alessia Pallaoro, Mehran R. Hoonejani, Gary B. Braun, Carl D. Meinhart, and Martin Moskovits
    ACS Nano 2015 9 (4), 4328-4336
    DOI: 10.1021/acsnano.5b00750



  14. ^ Yang, J; 等. Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping (PDF). ACS Nano. May 2013, 7 (6): 5350–5359. doi:10.1021/nn401199k. 


  15. ^ 15.015.1 Han, YA; Ju J; Yoon Y; Kim SM. Fabrication of cost-effective surface enhanced Raman spectroscopy substrate using glancing angle deposition for the detection of urea in body fluid. Journal of Nanoscience and Nanotechnology. May 2014, 14 (5): 3797–9. PMID 24734638. doi:10.1166/jnn.2014.8184. 


  16. ^ 16.016.1 Li, D; Feng S; Huang H; Chen W; Shi H; Liu N; Chen L; Chen W; Yu Y; Chen R. Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening. Journal of Nanoscience and Nanotechnology. March 2014, 10 (3): 478–84. PMID 24730243. doi:10.1166/jbn.2014.1750. 


  17. ^ Andreou, C., Mirsafavi, R., Moskovits, M., & Meinhart, C. D. (2015). Detection of low concentrations of ampicillin in milk. The Analyst, 140(15), 5003–5005. doi:10.1039/c5an00864f


  18. ^ Deng, Y; Juang Y. Black silicon SERS substrate: Effect of surface morphology on SERS detection and application of single algal cell analysis. Biosensors and Bioelectronics. March 2014, 53: 37–42. doi:10.1016/j.bios.2013.09.032. 


  19. ^ Hoppmann, Eric; 等. Trace detection overcoming the cost and usability limitations of traditional SERS technology (PDF) (Technical report). Diagnostic anSERS. 2013. 


  20. ^ Wackerbarth H; Salb C; Gundrum L; Niederkrüger M; Christou K; Beushausen V; Viöl W. Detection of explosives based on surface-enhanced Raman spectroscopy. Applied Optics. 2010, 49 (23): 4362–4366. doi:10.1364/AO.49.004362. 


  21. ^ Xu, Zhida; Jiang, Jing; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu, Logan. Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer. Nanoscale. 2016, 8: 6162–6172. doi:10.1039/C5NR08357E. 








Popular posts from this blog

【情報】本週珍珠商品重點:煉金時裝 + 艾港勞工宿舍!!

京昆高速公路

【攻略】陳戈-謝勒汗智慧的古書 (完成)